Friday, February 18, 2011

I've Got a Lava Lamp, Nananana.

     Just yesterday my biology class did a very interesting experimnent. We all made our own little lava lamp. The lava lamp was invented by Edward Craven Walker in 1963. A lava lamp is  defined as a display device with the creation of colored globs of oozing wax suspended in water (mixed with a cocktail of “secret ingredients”) and encased in an illuminated glass tube. Edward Craven Walker got the idea for this creation after walking into a pub. He spent the next 15 years perfecting the invention so that it could be mass-produced. The Astro Lamp, later called the Lava Lamp, was launched in 1963. This all happened just in time for the Hippie/Disco age of the Lava Lamp.
       In the lab we filled a water bottle 3/4ths of the way up with vegetable oil and we filled the rest of it with the ol' H2O. After that we put in some color with some food coloring to make it look more psychedelic. Then we added the Alka Seltzer tablets (You could of used salt too, but Erika and I decided to go with the tablets.) After we added a couple of those our lava lamp came to life! It started bubbling and looking just like a cheap lava lamp you by at a yard sale. It was AWESOME.
     The person that was across from us at the table, Chelsea, used the salt and it seemed like the salt didn't have as much affect on the lava lamp. That could be because she had to stir hers and it mixed up everything for a bit, but then again it could be because it didn't have the same chemical composition as the Alka Seltzer. All in all it was a successful experiment, and it was definitely enjoyable.
I answered the discussion questions in the video already, but I will go through them again through text.

Why does the oil "float" on water and not vice versa?
For an easy answer - The oil floats because it is less dense then the water. In other words it weighs less. For a more in depth answer -  Pure waters density is 1000kg/m³. Oil is usually around the 800kg/m³. Therefore the lighter less dense fluid floats to the top. Just like how a balloon filled with helium floats, the helium is less dense than the air.

Why doesn't the oil and water mix?
The oil and water doesn't mix because because oil is hydrophobic. If you don't know what that means look at the prefix and suffix. Hydro - Water, Phobic - Fear. Pretty much the oil is afraid of the water and doesn't mix. This is based on the oxygen molecules and how they interact with each other.

Why do you thin the food coloring didn't adhere to the oil?
I think that it didn't adhere to the oil because, well...the food coloring is hydrophilic (Water loving) and it mixed with the water instead. (Yessssss, I know this one was short, please forgive me. ;)

Discuss the creation of the "lava". What do you think is happening?
I think that the "lava" is created because the Alka Seltzer tablets react and oxidize the water making the food-colored water float through the oil making it look like a lava lamp.

Tuesday, February 8, 2011

Quorum Sensing, Bonnie Bassler, and Glowing Cats.
     Bonnie Bassler, a graduate from Princeton University, is now a leading scientist in the discovery of bacteria, and the revolution of bacteria as well. Bassler was interviewed by NOVA about her recent research on a form of bacteria that has a blue glow to it. The bacteria is called Vibrio harveyi. She also talked about the astonishing science of quarom sensing, which is essentially what allows bacteria to be multi-cellular.

    In the article, Bassler talked about many things involving bacteria. Such as how much is actually around us and how most of the bacteria isn't even harmful. How there are ten times more bacteria in our bodies, than the cells that are in our bodies. She stated that "They protect us. And you can't even digest your food without the bacteria that are in your gut. They have enzymes and proteins that allow you to metabolize foods you eat.", essentially meaning that we need bacteria to function. And sure there are some that are bad, but there are also so many good forms. Our bodies are swarming with bacteria, and we don't even have the slightest idea what it would be like without it. We are stuck with bacteria, so we better get used to having it stick around.

       Also in the article there was talk about quarum sensing, which in other words, is how bacterium actually communicates with each other. Yes, bacteria doesn't seem like they would communicate with each other, i mean they don't even have a nucleus! But they send out chemicals, and that is how the bacteria ultimately communicates with each other. While bacteria is growing, each different cell releases a small amount of chemicals, auto-inducers. And with those more and more molecules begin to grow.

      The bacterium that started this whole thing was the glowing blue bacteria that I had previously said in this post, Vibrio harveyi. This is the bacteria that they look at to see how Quarom sensing actually works...
      I know what you are thinking, get back to the glowing bacteria. Well, it seems like it should be a rare thing, but actually in the ocean it is the norm to have a glow to anything, so they can naturally see. I was watching something on the Internet a few months ago, and actually they had animals (cats, rats, birds) eat food with some kind of bacterium like this one and the animals grew up to glow as well. It just goes to show you how astonishing this all is.

     But back to the Quarom Sensing, this bacteria is controlled by Quarom Sensing, which is why they glow. They send out the chemicals and in turn it brings a blue luminescence to the bacteria. This is also providing research for future bacteria and how Quarom Sensing will be intertwined with that as well.
     I personally think that this is an amazing thing to have, I can think of so many ways we could potentially use Quarom Sensing in our daily lives, and how actually we are already using it with out even knowing. It's a great thing to have scientists like Bonnie Bassler and her crew to figure out new things, and potentially change the world.

R. Gent